Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 mb of mouse genome.

نویسندگان

  • Kelly A Frazer
  • Claire M Wade
  • David A Hinds
  • Nila Patil
  • David R Cox
  • Mark J Daly
چکیده

High-density SNP screening of panels of inbred mouse strains has been proposed as a method to accelerate the identification of genes associated with complex biomedical phenotypes. To evaluate the potential of these studies, a more detailed understanding of the fine structure of sequence variation across inbred mouse strains is needed. Here, we use high-density oligonucleotide arrays to discover an extremely dense set of SNPs in 13 classical and two wild-derived inbred strains in five genomic intervals totaling 4.6 Mb of DNA sequence, and then analyze the segmental haplotype structure defined by these high-density SNPs. This analysis reveals segments ranging from 12 to 608 kb in length within which the inbred strains have a simple and distinct phylogenetic relationship with typically two or three clades accounting for the 13 classical strains examined. The phylogenetic relationships among strains change abruptly and unpredictably from segment to segment, and are distinct in each of the five genomic regions examined. The data suggest that at least 12 strains would need to be resequenced for exhaustive SNP discovery in every region of the mouse genome, that approximately 97% of the variation among inbred strains is ancestral (between clades) and approximately 3% private (within clades), and provides critical insights into the proposed use of panels of inbred strains to identify genes underlying quantitative trait loci.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Resolution Map of Segmental DNA Copy Number Variation in the Mouse Genome

Submicroscopic (less than 2 Mb) segmental DNA copy number changes are a recently recognized source of genetic variability between individuals. The biological consequences of copy number variants (CNVs) are largely undefined. In some cases, CNVs that cause gene dosage effects have been implicated in phenotypic variation. CNVs have been detected in diverse species, including mice and humans. Publ...

متن کامل

Fine-scale maps of recombination rates and hotspots in the mouse genome.

Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage hav...

متن کامل

Genetic and haplotype diversity among wild-derived mouse inbred strains.

With the completion of the mouse genome sequence, it is possible to define the amount, type, and organization of the genetic variation in this species. Recent reports have provided an overview of the structure of genetic variation among classical laboratory mice. On the other hand, little is known about the structure of genetic variation among wild-derived strains with the exception of the pres...

متن کامل

Mouse Phenome Project: understanding human biology through mouse genetics and genomics.

THE HUMAN GENOME PROJECT IS generating vast amounts of new information at breakneck speed and causing a fundamental shift in disease research. Now with the availability of a nearly complete, high-accuracy sequence of the mouse genome (7), a new and powerful paradigm for biomedical research is established. The remarkable similarity of mouse and human genomes, in both synteny and sequence, uncond...

متن کامل

The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data

Characterizing variation in the rate of recombination across the genome is important for understanding several evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the hotspot diversit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2004